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Abstract. On the basis of the transfer-matrix technique, an analytical method for investigating
the stationary states for an electron in one-dimensional periodic structures in an external electrical
field, displaying the symmetry of the problem, is developed. These solutions are shown to be
current carrying. It is also shown that the electron spectrum for infinite structures is continuous,
and that the corresponding wave functions do not satisfy the symmetry conditions of the problem.

1. Introduction

The question of how an external (constant, uniform) electrical field influences the electron
motion in periodic structures has been of great interest for decades [1–4]. Nevertheless,
disagreements as regards the nature of the energy spectrum still persist. Some analytical
investigations [3, 5, 6] have shown that the energy spectrum should be discrete irrespective
of the potential form, and consist of so-called Wannier–Stark ladders with uniformly spaced
levels. But other studies (see [4, 7–9] and references therein, including the rigorous mathe-
matical results for the smooth potentials) indicate that, with certain restrictions imposed
on the potential, the spectrum is continuous, and that a discrete spectrum may exist only
for periodic structures consisting ofδ-potentials (under certain conditions) andδ′-potentials
(always).

In the simplest model, the problem is reduced to that of solving the one-dimensional
Schr̈odinger equation whose Hamiltonian includes the periodic potential and the potential
of an electric field. It is known [5] that the properties of the equation depend strongly on
the choice of gauge for the field. When a scalar potential is used, the Hamiltonian is time
independent, as in the absence of the field (the problem with zero field will be referred to
as a zero-field problem (ZFP)), but its symmetry is different from the translational one. In
this case it is important to reveal the changes in the band-gap energy spectrum of the ZFP
that are caused by the field, and to find the wave functions satisfying the new symmetry
conditions (these functions will play a role which is similar to that of the Bloch functions
in the ZFP). A directly opposite situation arises for a vector representation. Now, switching
on the field does not break the translational symmetry, and the Hamiltonian becomes time
dependent. As a result, the electron energy is no longer a quantum number, and the initial
problem can be treated as that of a Bloch electron accelerated by the field.

The mathematical difficulties associated with making use of the scalar potential are well
known, since their first exposition in the famous paper [3] by Wannier. To overcome them,
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the author had to treat a finite number of the Bloch bands. This approximation was rightly
disputed later [4, 7]. Recent investigations (see, for example, [8, 9]) show that the solution
of the problem essentially depends on the alternation order of the Bloch bands and gaps in
the high-energy region in the spectrum of the ZFP. It is known that for periodic finite-value
potentials the bandwidth increases to infinity with increasing energy, while the gap width
vanishes. Taking into account a finite number of Bloch bands is equivalent to treating the
whole high-energy region as a gap. Such an approximation is sure to lead to a discrete
spectrum.

As far as we are aware, no rigorous analytical solution to the problem with a scalar
potential of a general form has been found. Also, the stationary electron states, displaying
the symmetry of the problem, remain to be investigated. In this work we propose an exact
analytical method for finding such stationary states. The connection between them and the
Bloch states is discussed here. The energy spectrum of an electron and the Zener tunnelling
are also considered.

2. The symmetry of the wave functions

The basis for our approach is the transfer-matrix method (TMM) [10], which we have used
previously [11] for solving the ZFP. We recall that one of the main points of that formalism
is the notion of out-of-barrier regions (OBRs), where the total potential is equal to zero.
Here we shall use this notion as well, having made the necessary generalizations appropriate
to the problem at hand. This can be done in either of two ways. Firstly, one may consider
the total potential in the OBR to coincide with the Stark potential which is a linear function
of x (in this case the treatment should be based on the Airy-function formalism). Secondly,
one may consider the potential in these regions to be a constant which depends linearly
on the cell number. The proportionality coefficient depends on the electrical field strength.
Both of these variants can be used in our approach. However, in this work we concentrate
on the latter, because there is a more evident association with the ZFP in this case.

The stationary Schrödinger equation for a structure ofN periods (unit cells) may be
written as

d29

dx2
+ 2m

h̄2 (E − V (x))9 = 0 (1)

where: E is the electron energy;m is its mass;V (x) is defined by the expressions
V (x) = v(x)− n1 if x ∈ (an, bn+1) (n = 0, . . . , N − 1) andV (x) = −n1 if x ∈ (bn, an);
bn = nD; an = l + nD (n = 0, . . . , N); 1 = eED; e is the (modulus of the) electron
charge;l is the OBR width;D is the period of the structure;E is the electric field strength;
v(x) is a bounded function with periodD.

It should be noted that boundary conditions at the pointsx = 0 andx = aN are not
needed here, for we do not solve the boundary-value problem. Semi-infinite and infinite
structures will be considered below. Notice also that the parameterl may be equal to
zero, for the OBR may always be included in the initial potential (as the point with an
infinitesimal neighbourhood) without changing the solution of equation (1) (the new and
initial potentials are equivalent functions). Thus the present method can be used for any
initial potential.

It is known [3] that if the function9E(x) is a solution of equation (1), then9E+1(x−D)
is a solution too. On the basis of this statement, one can assume that there are solutions (to
be referred to as9E (x;E)) among those of equation (1) satisfying the condition

9E (x +D;E) = constant×9E (x;E +1) (2)
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where the constant is a complex value. Our main goal is to find the functions9E (x;E)
and to examine their properties.

The solutions to the Schrödinger equation, both with the scalar and with the vector
potentials, are generally found in the form of an expansion in orthogonal functions (for
example, in the Bloch functions). In this case the required and basis functions are supposed
to belong to the same class of functions. The disadvantage of such an approach is that,
in finding wave functions obeying the symmetry conditions, it is not always clear to what
class of functions they are to belong. So, for example, in the absence of the field, the same
condition of translational symmetry (it coincides with (2) when1 = 0) leads, for the bands,
to the Bloch functions being bounded everywhere, but for the gaps it provides functions that
are unbounded at plus and minus infinity. As will be shown below, the functions9E (x;E)
are unbounded whenx →−∞. Thus, if we attempted to find these functions in the Bloch
or Wannier expansions, we could obtain an incorrect result, because both sets of functions
belong to other classes. The transfer-matrix method is free from this drawback, because the
expansion technique is not used there.

3. The functional equation for wave functions in the transfer-matrix method

The general solution of equation (1) in the OBR is

9(x;E) = A(+)n (E) exp[ikn(x − bn)] + A(−)n (E) exp[−ikn(x − bn)] (3)

wherekn =
√

2m(E + n1)/h̄2; n = 0, . . . , N .
Here the main problem is that of finding the coefficientsA(+)n (E) and A(−)n (E);

n = 0, . . . , N . Once the coefficients have been found, the determination of the9E (x;E) in
the barrier regions should present no serious problems. In the general case, for this purpose
one can use, for example, a numerical technique [12].

The connection between the coefficients of the solutions for the first two OBRs is given
by

A0(E) = α(E)Y(E)Γ(E)A1(E). (4)

Here Y is a transfer matrix (see [10]), describing the barrier at the unit celln = 0
(provided that there is no step at the pointb1), andαΓ is a matrix matching the solutions
at the step atx = b1:

Y =
(
q̃ p̃

p̃∗ q̃∗

)
Γ =

(
qs ps
ps qs

)
An =

(
A(+)n

A(−)n

)
(5)

q̃ = 1√
T

exp[−i(J + k0l)] p̃ =
√
R

T
exp

[
i

(
π

2
+ F − k0l

)]
qs = (α + α−1)/2 ps = (α−1− α)/2 α(E) =

√
k1(E)/k0(E).

The phasesJ (E), F(E) and the transmission coefficientT (E) (see [10]) describing the
barrier in the zero cell are assumed to be known;R = 1− T .

Let

Z = YΓ =
(
q p

p∗ q∗

)
.

Then the relationship (4) can be rewritten as

A0(E) = α(E)Z(E)A1(E) (6)
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and the connection between any two adjacent OBRs will be determined by

An(E) = α(E + n1)Z(E + n1)An+1(E) n = 0, 1, . . . , N − 1. (7)

Given (7), the connection between the zeroth andN th unit cells can be written in the form

A0(E) = α(1,N)(E)Z(1,N)(E)AN(E) (8)

where

Z(1,N)(E) = Z(E) · · ·Z(E + (N − 1)1) (9)

α(1,N)(E) =
N−1∏
n=0

α(E + n1) =
√
k0(E +N1)

k0(E)
.

Defining for all n the vector

Ãn(E) = α(1,n)(E)An(E)
we can rewrite equation (8) as

A0(E) ≡ Ã0(E) = Z(1,N)(E)ÃN(E). (10)

Now, by analogy with the ZFP [11] we will attempt to find the wave functions whose
expressions for the extreme OBRs (i.e. for the zeroth andN th unit cells) are connected by
means of symmetry. For this purpose we will demand that the coefficients of the zeroth
and first OBRs must satisfy the condition

Ã1(E) = C(E)A0(E +1) (11)

whereC(E) is a complex function. Then, by equation (6),A0(E) must obey the functional
equation

A0(E) = C(E)Z(E)A0(E +1). (12)

It is easy to check thatA0(E) is determined by this equation to within a scalar periodical
function,ω(E); ω(E + 1) = ω(E). That is, if the functionA0(E) is a solution, then so
will be ω(E)A0(E).

Now, taking into account (11) and (12) in the relation (8), we have

ÃN(E) = GN(E)A0(E +N1) (13)

where

GN(E) =
N−1∏
n=0

C(E + n1).

As in the ZFP [11], equations (10) and (13) provide theoretically a way of deriving,
in explicit form, the expressions for theN -barrier transfer matrix (9) in terms ofA0(E),
i.e. in terms of unit-cell characteristics. However, as will be seen from the following, in
this approach it gives no benefits for calculating theZ(1,N)(E).

Considering (13) and the relationGn+1(E) = C(E)Gn(E +1), one can show that

Ãn+1(E) = C(E)Ãn(E +1).
Such a connection between the coefficients of two adjacent OBRs guarantees fulfilment of
the symmetry condition (2); that is,

9E (x +D;E) = α−1(E)C(E)9E (x;E +1). (14)

So, in the TMM the symmetry condition leads to the functional equation (12) for the
coefficients of the general solution of the Schrödinger equation.
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4. Solutions of the functional equation

According to the theory of functional equations [13], in order to solve equation (12) one
needs to define the auxiliary functionsηn(E), wheren = 0, 1, . . ., with the help of the
relationships

η0(E) = C(E)Z(E)η0(E) (15)

ηn(E) = C(E)Z(E)ηn−1(E +1). (16)

Then the solution of equation (12) can be written, as is easily checked, in the form

A0(E) = lim
n→∞ηn(E). (17)

In fact, this means that we have to solve the auxiliary equation (15) and to prove the
existence of the limit (17).

Considering equations (15) and (16), we can write the limit (17) also as

A0(E) = G∞(E)Z(1,∞)(E)η̃0 (18)

where

η̃0 = lim
n→∞η0(E + n1).

The finding ofA0(E) is seen to be associated with calculating the matrixZ(1,∞)(E)
for the semi-infinite structure. That is why deriving expressions forZ(1,N)(E) in terms of
A0(E) is of no interest in this approach.

Let us begin by solving equation (15). It can be rewritten as

η
(−)
0

η
(+)
0

= C−1− q
p

= p∗

C−1− q∗ η0 =
(
η
(+)
0

η
(−)
0

)
. (19)

This equation coincides as regards form with equation (8) (see reference [11]) in the
ZFP. The only difference is that the matrixZ(E) describes the one-cell potential which
involves the electric field effect. Here the graduation of the energy scale into Bloch bands
(‘allowed’ energy regions) and gaps (‘forbidden’ energy ones) arises as well. But such
a division does not yield the energy spectrum for the given problem and is of auxiliary
significance.

Since detZ(E) = 1, the solutions of the characteristic equation (19) (the right-hand
equality) are two reciprocal quantities. In choosing the required root, for any energy region,
we must proceed from the fact that the functionC(E) must have a limit whenE → ∞.
Otherwise, the limitη̃0 does not exist either, and hence expression (18) loses its meaning.

Let us show that the solutions of the auxiliary equation (19), having the properties
needed, are expressed by

C1(E) = 1

q + y η
(+)
0

∣∣
1 = 1 η

(−)
0

∣∣
1 =

y

p

C2(E) = 1

q∗ − y η
(+)
0

∣∣
2 = −

y

p∗
η
(−)
0

∣∣
2 = 1

C2 = C−1
1 y = − i|p|2 sgn(u)

|u| +
√
u2− |p|2

u = Im(q).

First of all, it should be noted that the limit̃η0 is calculated on the set of equidistant
pointsEn, whereEn = E + n1; n = 0, 1, . . .. This set will be denoted bySE,1; in doing
this, we emphasize its dependency on the parametersE and1. It is supposed thatE varies
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on the interval(0,1]. The setSE,1 consists of the two subsetsSaE,1 and SfE,1 whose
points belong to the bands (|u| > |p|) and gaps (|u| 6 |p|), respectively. As will be shown
below, the behaviours of the vector functionη0(En) on the subsetsSaE,1 and SfE,1 differ
qualitatively. Therefore, there exists no limitη̃0 when both of the subsets are infinite.

It follows from general considerations that the numbers of points inSaE,1 and SfE,1
depend on the widths of the bands and gaps as well as on their locations on the energy
scale. As will become clear from the following, in order to show the role of both factors, it is
sufficient to investigate the rectangular barrier (v(x) = v0). By using the explicit expressions
for the tunnelling parameters of the rectangular barrier (see, for example, [10]), one can
show that for the matrix elementp̃ in the high-energy region, the inequality|p̃| . (v0/2)E−1

is valid. The asymptote of the phaseJ (E) is the functionk0(E)d (d = b1−a0 is the barrier
width)—for the larger the electron energy is, the more similar its motion is to that of the
free electron. Thus, in the high-energy region the centres of the gaps (the points which
satisfy the equation sin(J (E) + k0l) = 0 are meant) for periodical structures formed with
the rectangular barriers asymptotically coincide on the energy scale with the pointsEL,
where

EL = L2ε ε = π2h̄2

2mD2
L = 0, 1, . . ..

The distance between the gap centres in the high-energy region is, consequently, a multiple
of the constantε. In this case, the gap width tends to zero with increasingE, while the
bandwidth, in contrast, goes to infinity (see [7–9]). These findings are not changed by the
presence of the step in the right-hand boundary of the barrier, because the corresponding
matrix Γ is real, and, also,|ps(E)| ∼ E−1 as for the rectangular barrier. That is, for the
matrix Z(E) we have

|p(E)| . v0

2E
arg(q) ≈ k0(E)D. (20)

Here it is also taken into account thatq = q̃qs + p̃ps , p = q̃ps + p̃qs ; |q̃|2 − |p̃|2 = 1,
q2
s − p2

s = 1. The asymptotics in the high-energy region is not changed either when going
to the general-form barrier, because in this case the inequality|p̃(E)| . (vmax/2)E−1 holds,
and the asymptotics ofps(E) remains the same; herevmax is the maximum of the moduli
of v(x).

It follows from the above that the subsetSaE,1 is always infinite, and thatSfE,1 is infinite
in exceptional (‘resonance’) cases only:E = 1 = rε, wherer is a rational number. There
is no limit η̃0 under these conditions, for the moduli of the functionsη

(−)
0 (E)|1 andη(+)0 (E)|2

are equal to unity onSfE,1, but onSaE,1 they vary between the limits zero and unity.
At the given1, the set of energy values for which ‘resonance’ takes place is simply a

countable set. This is in essence connected with the fact that the gap width goes to zero in
the limit L→∞. Any arbitrary small variation ofE removes the pointsEn, beginning at
some numberN , from the gaps. Since all of these points belong to the subsetSaE,1, where
the inequality|u| > |p| holds, there exists aδ > 0 such that for alln > N the condition
|u(En)| > |p(En)|1−δ is valid (note that|p|2 < 1 in the high-energy region). It follows
from this that at these points we have

|y| = |p|2
|u| +

√
u2− |p|2

<
|p|2
|u| 6 |p|

1+δ.

Hence,

|η(−)0 (En)|1 = |y||p| 6 |p(En)|
δ . γE−δn



Stationary states of an electron in periodic structures 6713

whereγ = (vmax/2)δ. The same asymptotics arises forη(+)0 (En)|2. This means that almost
everywhere on the energy scale

η̃0

∣∣
1 =

(
1
0

)
η̃0

∣∣
2 =

(
0
1

)
. (21)

Now, substituting (21) into (18), we get the final expressions for the two solutions of
functional equation (12):

A(1)0 =
(
Q(1,∞)G∞
P ∗(1,∞)G∞

)
A(2)0 =

(
P(1,∞)G−1

∞
Q∗(1,∞)G

−1
∞

)
(22)

whereG∞ = G(1)
∞ = 1/G(2)

∞ ; Q(1,∞) andP(1,∞) are the elements ofZ(1,∞). Then from (13)
it follows that

Ã(1)∞ (E) =
(
G∞(E)

0

)
Ã(2)∞ (E) =

(
0

G−1
∞ (E)

)
. (23)

Expressions (3), (8), and (22) provide two independent functions9
(1)
E (x;E) and

9
(2)
E (x;E). Both solutions are current-carrying ones. The corresponding probability flows,

I(1)(E) andI(2)(E), are

I(1)(E) = h̄m−1k0(E)|G∞(E)|2 I(2)(E) = h̄m−1k0(E)|G∞(E)|−2. (24)

Now we have to prove that the limit in (17) exists. Otherwise expressions (22)–(24)
are meaningless.

5. On the existence of the solutionsΨE(x;E)

For a complex-valued matrixH and vectorA, let us define the norms

‖H‖ = max
j

√√√√ 2∑
i=1

|hij |2 j = 1, 2

‖A‖ = |A(+)| + |A(−)|.
In particular, this means that‖Z‖2 = 1+ 2|p|2. Considering the first solution, we will
prove that for any givenE andε > 0 we can find a numberN such that

‖ηn(E)− ηn−1(E)‖ < ε (25)

for n > N . Since

ηn(E) = Gn(E)Z(1,n)(E)η0(En)

(hereEn = E + n1) we have

‖ηn(E)− ηn−1(E)‖ 6 |Gn−1(E)| ‖Z(1,n−1)(E)‖F(E) (26)

whereF(E) = ‖C(En)Z(En)η0(En)− η0(En−1)‖.
Let us show that the first two norms are bounded asn→∞. We have

|G∞(E)|−1 =
∞∏
n=0

|C(En)|−1 =
∞∏
n=0

|q(En)+ y(En)| 6
∞∏
n=0

|q(En)|
(

1+ |y(En)||q(En)|
)
. (27)

The convergence of both norms in (27) is equivalent to that of the series
∑∞

n=0 n
−2,

because|q| =
√

1+ |p|2, y ∼ |p|2, |p| ∼ n−1. Since this series converges, the infinite
product|G∞(E)| does as well.
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For the matrix describing the semi-infinite structures, we have

‖Z(1,∞)(E)‖2 6
∞∏
n=0

‖Z(En)‖ =
∞∏
n=0

(1+ 2|p(En)|2).

Obviously, this product converges for the same reason as (27). In addition, since

‖Z(1,∞)(E)‖2 ≡ 1+ 2
R(1,∞)(E)
T(1,∞)(E)

we have thatT(1,∞)(E) 6= 0. Hence the semi-infinite structure must be not absolutely opaque
to an electron.

Now, it remains to show thatF in (26) approaches zero with increasingn. Using (15)
we have

F = ‖η0(En)− η0(En−1)‖ . 2γ n−δ. (28)

Since the norms|G∞(E)| and‖Z(1,∞)(E)‖ are bounded, we have

max
j
(|Gj(E)| ‖Z(1,j)(E)‖)

wherej = 1, 2, . . .. Together with (28), this guarantees fulfilment of the inequality (25),
which proves the existence of the limit in (17). For the second solution, the arguments are
similar.

6. Conclusions

At first glance it appears that the functions9E (x;E) can be calculated by this method only
for the region located to the right of the zero cell. However, it should be noted that any
unit cell of the periodical structure may be taken as the zero cell. Then, by making use of
the transfer matrix which connects solutions for the zero cell with those for the regions to
the left of it, one can calculate the functions9E (x;E) for the whole axis Ox.

Since both functions9E (x;E) are current carrying, their moduli increase infinitely in
the classically inaccessible range whenx →−∞, according to the general properties of the
one-dimensional Schrödinger equation. Thus, for infinite structures, the9E (x;E) are not
solutions to the problem. However, for anyE (excluding a countable set for certain values
of 1), the (non-degenerate) solution for the infinite structure can be obtained as a linear
combination of these functions. As a result, we arrive at two important conclusions. First,
for the limited periodical potentials the energy spectrum of an electron in the problem for
infinite structures is continuous (so the Wannier–Stark states, according to the model, may
exist only as quasi-stationary ones). Second, the stationary wave functions of an electron in
the infinite structures, being linear combinations of the functions9E (x;E), do not satisfy
the symmetry condition (2). (There is a common misconception that the continuity of the
spectrum in this problem is obvious. The following arguments are used in this case, namely
that the energy spectrum is continuous since

(a) the range wherex is large is classically accessible to an electron; and
(b) the periodical potential is negligible in comparison with the Stark potential when

x → ∞, and, consequently, the electron motion in this range is of the free-electron type
(see, for example, [3]).

However, it should be noted that the first statement is valid only ifV (x) remains finite at plus
infinity. But if V (x)→−∞ asx →∞, then the electron spectrum may be both continuous
and discrete, depending on the monotonicity and rate of decrease ofV (x) at x →∞ (see,
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for example, [14]). It also follows from this that the second argument is erroneous, because
on the whole axis OX the derivatives ofV (x) (and, hence, its monotonicity) are determined
by the periodical component of the potential.)

It is interesting also to dwell for a moment on the question of the connection of the
given problem to the ZFP. We will start with the fact that the wave functions9E (x;E) are
defined in terms of the solutions of auxiliary equation (19), formally describing the electron
motion in the periodic structures in the absence of an electric field. In addition, for finite
structures the functions9E (x;E), in view of their properties, are close to the solutions of
the ZFP, ifN1 � E (N is the number of unit cells in the structure). In particular, if the
values ofE are in the band, then the9E (x;E), in the given interval, are close to the usual
Bloch functions. This is the case when an electrical field has a weak effect on the electron
with the energyE. However, the ZFP is not a limiting case for the given problem when
the periodical structure is considered for the whole axis Ox. The wave functions9E (x;E)
are then unbounded whenx →−∞, for all values of the electric field strength.

Some comments should also be made about the role of the Zener tunnelling (ZT),
which has aroused great interest (see, for example, [6] and references therein) since [2] first
appeared. Strictly speaking, this concept refers to electron transitions between bands, and
therefore it relates to the non-stationary case. In the models with the vector potential, the
Zener tunnelling is caused by the accelerating effect of the field, resulting in a Bloch electron
passing (tunnelling) from the lower bands to the upper. In our approach we investigate
stationary states. Nevertheless, we can draw some conclusions on this question. This is
possible because symmetry condition (14), governing the functions9E (x;E), links theirE-
andx-dependencies. In particular, for9E (x;E), relationship (13) is valid. Note also that
Ã∞ (see (23)) is a bounded non-zero value. This provides the asymptoticsAn ∼ n−1/4 and
A0(E) ∼ E−1/4 (as for Airy’s functions). Thus the probability that an electron is in the
nth unit cell or that it has the energyE decreases with the increasing of these parameters
according to a power law instead of the exponential one. This result makes the conclusion
presented in reference [8] more precise.

Also, it follows from the above that the well-known Bloch oscillations can exist only
as decaying ones. As regards the experimental evidence of long-lived Bloch oscillations
and Wannier–Stark ladders in superlattices, it is not a question of the correctness of our
approach. This evidence implies only that one needs to find a mathematical model which
would be more suitable for describing superlattices. In the future we intend to present such
a model.
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